
BASUDEV GODABARI DEGREE COLLEGE, KESAIBAHAL
Department ot Computer Science 

SELF STUDY MODULE" 

Madule Details: 
.Class-4th Semester (2019-20) Admissian Batch 

.Subject Name: COMPUTER SCIENCE 

Paper Name: OPERATING SYSTEM 

UNIT-2STRUCTURE 
Introduction to Operating System 2.1 

2.2 Process Management: Process Concept, Operation On Process 

2.3 Process Scheduling and Algorithm

4 Inter Process Communication

2.5 Concept of Thread and Process 

2.6 Deadlocks: Deadlocks detection 

2.7 Deadlocks Prevention 

2.8 Deadlocks avoidance fundamental 

Learning Dbjective 
After Learning this unit you should be able to 

Know the Binary Basic concept of Operatingg System 

Know the Process management

Process Scheduling and Algorithm 

Concept of Thread and Process 

Deadlocks Detection Prevention et.. 

You Can use the Follawing Learning Viden link related to above topic: 
https://youtu.be/WJ-UaAaumNA 

https://youtu.be/aytWaG4m EJI 

https://youtu.be/pg206_xLV-Y 

https://youtu.be/2dJdHMpCLIg 
https://youtu.be/ITc09gOrqZk 

https://youtu.be/rWFH6PLOIEl 

You Can also Use the follawing Books 
.Operating System Concepts"by Avi Silberschatzand PeterGalvin. 

Operating Systems: Internals and Design Principles"by Wiliam Stallings.. 
Operating Systems: A Concept-Based Approach" by D M Dhamdhere. .. 

Operating System: A Design-oriented Approach" by Charles Crowley. .. 

And also you can dawnload any baak in free by using the followingwebsite, 
.https://www.pdfdrive.com/ 



UNIT-2 
OPERATING SYSTEM 

Process Management in OS 
A Program does nothing unless its instructions are executed by a CPU. A program in execution is called a process. In order to accomplish its task, process needs the computer resources. 

There may exist more than one process in the system which may require the same resource at the same time. Therefore, the operating system has to manage all the processes and the resources in a convenient and efficient way. 

Some resources may need to be executed by one process at one time to maintain the consistency otherwise the system can become inconsistent and deadlock may occur. 

The operating system is responsible for the following activities in connection with Process Management 
1. Scheduling processes and threads on the CPUs. 
2. Creating and deleting both user and system processes. 
3. Suspending and resuming processes. 
4. Providing mechanisms for process synchronization. 
5. Providing mechanisms for process communication. 

Attributes of a process
The Attributes of the process are used by the Operating System to create the process control block (PCB) for each of them. This is also called context of the process. Attributes which are stored in the PCB are described below. 
1. Process ID 

When a process is created, a unique id is assigned to the process which is used for unique identification of the process in the system. 

2. Program counter 

A program counter stores the address of the last instruction of the process on which the process was suspended. The CPU uses this address when the execution of this process is resumed. 
3. Process State 

The Process, from its creation to the completion, goes through various states which are new, ready, running and waiting. We will discuss about them later in detail. 

4. Priority 

Every process has its own priority. The process with the highest priority among the processes gets the CPU first. This is also stored on the process control block. 

5. General Purpose Registers 

Every process has its own set of registers which are used to hold the data which is generated during the execution of the process. 

6. List of open files 

During the Execution, Every process uses some files which need to be present in the main memory. OS also maintainsa list of open files in the PCB. 



Scheduie / Dispatch Process States 

compietion (TerminationRun Ready New State Diagram 

Priority / Time 
guantum 

Request 
completion 

Suspend 
ready 

Wait / 
block 

Suspend Resumne 

wnd Process compteted i/o but stin in suspend The process, from its creation 
to completion, passes through 

various states. The minimum number of states is five. 

The names of the states are not standardized although the process may be in one of the following states duringI 
execution. 
1. New 

A program which is going to be picked up by the OS into the main memory is called a new process. 
2. Ready 

Whenevera process is created, it directly enters in the ready state, in which, it waits for the CPU to be assigned. The 

OS picks the new processes from the secondary memory and put all of them in the main memory. The processes which are ready for the execution and reside in the main memory are called ready state processes. 

There can be many processes present in the ready state. 3. Running 

One of the processes from the ready state will be chosen by the OS depending upon the scheduling algorithm. 
Hence, if we have only one CPU in our system, the number of running processes for a particular time will always be 

one. If we have n processors in the system then we can have n processes running simultaneously. 
4. Block or wait 

From the Running state, a process can make the transition to the block or wait state depending upon the scheduling 
algorithm or the intrinsic behavior of the process. 

When a process waits for a certain resource to be assigned or for the input from the user then the OS move this 
process to the block or wait state and assigns the CPU to the other processes. 5. Completion or termination 
When a process finishes its execution, it comes in the termination state. All the context of the process (Process 
Control Block) will also be deleted the process will be terminated by the Operating system. 
6. Suspend ready 

A process in the ready state, which is moved to secondary memory from the main memory due to lack of the 
resources (mainly primary memory) is called in the suspend ready state. 

If the main memory is full and a higher priority process comes for the execution then the OS have to make the room 

for the process in the main memory by throwing the lower priority process out into the secondary memory. The 
suspend ready processes remain in the secondary memory until the main memory gets available. 7. Suspend wait 

Instead of removing the process from the ready queue, it's better to remove the blocked process which is waiting for 
some resources in the main memory. Since it is already waiting for some resource to get available hence it is better if 
it waits in the secondary memory and make room for the higher priority process. These processes complete their 
execution once the main memory gets available and their wait is finished 



Operations on the Process 1. Creatioon 

Once the process is created, it will be ready and come into the ready queue (main memory) and will be ready for the execution. 
2. Scheduling 

Out of the many processes present in the ready queue, the Operating system chooses one process and start executing it. Selecting the process which is to be executed next, is known as scheduling9. 3. Execution 

Once the process is scheduled for the execution, the processor starts executing it. Process may come to the blocked or wait state during the execution then in that case the processor starts executing the other processes. 4. Deletion/killing 

Once the purpose of the process gets over then the OS will kill the process. The Context of the process (PCB) willbe deleted and the process gets terminated by the Operating system 
Process Schedulers 

Operating system uses various schedulers for the process scheduling described below. 

1. Long term scheduler 

Long term scheduler is also known as job scheduler. It chooses the processes from the pool (secondary memory) and 
keeps them in the ready queue maintained in the primary memory. 

Long Term scheduler mainly controls the degree of Multiprogramming. The purpose of long term scheduler is to 

choose a perfect mix of 1O bound and CPU bound processes among the jobs present in the pool. 

If the job scheduler chooses more 1O bound processes then all of the jobs may reside in the blocked state all the time 
and the CPU will remain idle most of the time. This will reduce the degree of Multiprogramming. Therefore, the Job of 

long term scheduler is very critical and may affect the system for a very long time. 

2. Short term scheduler 

Short term scheduler is also known as CPU scheduler. It selects one of the Jobs from the ready queue and dispatch to 
the CPU for the execution. 

A scheduling algorithm is used to select which job is going to be dispatched for the execution. The Job of the short 

term scheduler can be very critical in the sense that if it selects job whose CPU burst time is very high then all the jobs 
after that, will have to wait in the ready queue for a very long time. 

This problem is called starvation which may arise if the short term scheduler makes some mistakes while selecting the 
job. 

3. Medium term scheduler 

Medium term scheduler takes care of the swapped out processes.If the running state processes needs some IO time 
for the completion then there is a need to change its state from running to waiting. 

Medium term scheduler is used for this purpose. It removes the process from the running state to make room for the 

other processes. Such processes are the swapped out processes and this procedure is called swapping. The medium 
term scheduler is responsible for suspending and resuming the processes. 

It reduces the degree of multiprogramming. The swapping is necessary to have a perfect mix of processes in the 

ready queue. 

Process Queues 



he Operating system manages various types of queues for each of the process states. The PCB related to the proce 
s also stored in the queue of the same state. If the Process is moved from one state to another state then its PCB i 
aso uninked from the corresponding queue and added to the other state queue in which the transition is made. 

New Schedule Complete Job queue Ready CPU Termination 

1/0 Waiting 

Event Event 

Timer/ Priority 

There are the following queues maintained by the Operating system. 
1. Job Queue 

In starting, all the processes get stored in the job queue. It is maintained in the secondary memory. The long term 
scheduler (Job scheduler) picks some of the jobs and put them in the primary memory. 
2. Ready Queue 

Ready queue is maintained in primary memory. The short term scheduler picks the job from the ready queue and dispatch to the CPU for the execution. 

3. Waiting Queue 

When the process needs some 1O operation in order to complete its execution, OS changes the state of the process 
from running to waiting. The context (PCB) associated with the process gets stored on the waiting queue which will be used by the Processor when the process finishes the IO. 

CPU Scheduling 

In the uniprogrammming systems like MS DOS, when a process waits for any /O operation to be done, the CPU remains idol. This is an overhead since it wastes the time and causes the problem of starvation. However, In Multiprogramming systems, the CPU doesn't remain idle during the waiting time of the Process and it stats executing other processes. Operating System has to define which process the CPU will be given. 
In Multiprogramming systems, the Operating system schedules the processes on the CPU to have the maximum utilization of it and this procedure is called CPU scheduling. The Operating System uses various scheduling algorithm to schedule the processes. 

This is a task of the short term scheduler to schedule the CPU for the number of processes present in the Job Pool. Whenever the running process requests some 1O operation then the short term scheduler saves the current context of the process (also called PCB) and changes its state from running to waiting. During the time, process is in waiting state; the Short term scheduler picks another process from the ready queue and assigns the CPU to this process. This procedure is called context switching. 



What is saved in the Process Control Block? 
he Operating system maintains a process control block during the lifetime of the process. The Process control biock 

Is deleted when the process is terminated or killed. There is the following information which is saved in the process 
control block and is changing with the state of the process. 

Process IDD 

Process State 

Pointer 

Priority 
Program Counter 

CPU Registers 

/O Information 

Accounting Information 

etc. 

Why do we need Scheduling? 

In Multiprogramming, if the long term scheduler picks more 1/0 bound processes then most of the time, the CPU 
remains idol. The task of Operating system is to optimize the utilization of resources. 

If most of the running processes change their state from running to waiting then there may always be a possibility of 
deadlock in the system. Hence to reduce this overhead, the OS needs to schedule the jobs to get the optimal 
utilization of CPU and to avoid the possibility to deadlock 

Paging with Example 

In Operating Systems, Paging is a storage mechanism used to retrieve processes from the secondary storage into the 
main memory in the form of pages. 

The main idea behind the paging is to divide each process in the form of pages. The main memory will also be 
divided in the form of frames. 

One page of the process is to be stored in one of the frames of the memory. The pages can be stored at the different 
locations of the memory but the priority is always to find the contiguous frames or holes. 

Pages of the process are brought into the main memory only when they are required otherwise they reside in the 

secondary storage. 

Different operating system defines different frame sizes. The sizes of each frame must be equal. Considering the fact 
that the pages are mapped to the frames in Paging, page size needs to be as same as frame size 



Operating 
System 

Frame 1 

Frame 2 
Page 1 

Frame 3 Page 2 

Frame 4 Page 3 

Page 4 
Frame 6 

Page 5 Process 
Frame 6 Mapping 

Page 6 

Frame 7 
Page 7 

Frame 8 Page 8 

Frame 9 Page 9 

Pages Main Memory 

(Collection of Frames) 

Example 

Let us consider the main memory size 16 Kb and Frame size is 1 KB therefore the main memory will be divided into 

the collection of 16 frames of 1 KB each. 

There are 4 processes in the system that is P1, P2, P3 and P4 of 4 KB each. Each process is divided into pages of 1 KB 

each so that one page can be stored in one frame. 

Initially, all the frames are empty therefore pages of the processes will get stored in the contiguous way. 

Frames, pages and the mapping between the two is shown in the image below. 



AIBAU 

16 KB 1 Frame 1 KB3 

Process P1 
Frame Size = Page 

P1 

P1 

P1 

P1 
Process P2 

P2 

P2 

P2 

P2 

P3 
Process P3 

P3 

P3 

P3 
Process P4 

P4 

P4 

P4 

P4 

Main Memory 

(Collection of Frames) 

Paging 

Let us consider that, P2 and P4 are moved to waiting state after some time. Now, 8 frames become empty and 

therefore other pages can be loaded in that empty place. The process PS of size 8 KB (8 pages) is waiting inside the 

ready queue. 

Given the fact that, we have 8 non contiguous frames available in the memory and paging provides the flexibility of 

storing the process at the different places. Therefore, we can load the pages of process PS in the place of P2 and P4. 



16 KB 1 Frame 1K 
Process P1 

P1 
Frame Size = Page= 

P1 

P1 

P1 

P5 Process P5 
P5 

P5 

P5 

Process P3 
P3 

P3 

P3 

P3 

P5 

P5 

P5 

P5 

Main Memory 

(Collection of Frames) 

Paging 
Memory Management Unit 

The purpose of Memory Management Unit (MMU) is to convert the logical address into the physical address. The logical address is the address generated by the CPU for every page while the physical address is the actual address of 
the frame where each page will be stored. 

When a page is to be accessed by the CPU by using the logical address, the operating system needs to obtain the physical address to access that page physicaly. 
The logical address has two parts. 

1. Page Number 

2. Offset 

Demand Paging 



According to the concept of Virtual Memory, in order to execute some process, only a part of the process needs to be 

present in the main memory which means that only a few pages will only be present in the main memory at any time. 

However, deciding, which pages need to be kept in the main memory and which need to be kept in the seconda 

memory, is going to be difficult because we cannot say in advance that a process will require a particular page at 

particular time. 

Therefore, to overcome this problem, there is a concept called Demand Paging is introduced. It suggests keeping al 

pages of the frames in the secondary memory until they are required. In other words, it says that do not load an 

page in the main memory until it is required. 

Whenever any page is referred for the first time in the main memory, then that page will be found in the secondary 

memory. 

After that, it may or may not be present in the main memory depending upon the page replacement algorithm which 

will be covered later in this tutorial. 

What is a Page Fault? 

If the referred page is not present in the main memory then there will be a miss and the concept is called Page miss 

or page fault. 

The CPU has to access the missed page from the secondary memory. If the number of page fault is very high then the 

effective access time of the system will become very high. 

What is Thrashing? 

If the number of page faults is equal to the number of referred pages or the number of page faults are so high so that 

the CPU remains busy in just reading the pages from the secondary memory then the effective access time will be the 

time taken by the CPU to read one word from the secondary memory and it will be so high. The concept is called 

thrashin9. 

If the page fault rate is PF %, the time taken in getting a page from the secondary memory and again restarting isS 

(service time) and the memory access time is ma then the effective access time can be given as; 

1 EAT = PF X S + (1 PF) X (ma) 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

